Corrosion and erosion defects are among the most common safety risks and reasons for production break downs in industrial environments such as refineries, pipeline networks, chemical plants, offshore platforms, storage tanks, etc. In order to maintain assets and to avoid hazards, ultrasonic thickness measurements are typically recorded frequently at pre-defined points creating a virtual grid on the surface of the test object. To help collect, organize and report readings efficiently, the **SONOWALL 70 ultrasonic thickness gage** can be equipped with the SONOGRID corrosion management software.

SONOGRID

CORROSION MANAGEMENT SOFTWARE FOR THE SONOWALL 70

- EFFICIENT AND RELIABLE MATRIX DATA COLLECTION
- VISUALIZATION OF TEST PATH THROUGH 3D GRID CREATION
- LIVE COMPARISON FUNCTION AND CORROSION RATE ESTIMATION
- REPRODUCIBILITY THROUGH GRID COPY FUNCTION AND DEVICE SETUP LIST
  - EASY ATTACHMENT OF A-/B-SCANS AND UNLIMITED TEXT COMMENTS
- DIRECT DATA EXPORT TO MS-EXCEL AND CUSTOM REPORT GENERATION



#### STRUCTURED DATA COLLECTION

- Matrix creation | Linear, 2D and 3D for efficient data collection and test path visualization
- Color coding | Visual indication of material condition and exceeded tolerances
- Live comparison | Each point can be compared to previously logged point to estimate corrosion rates

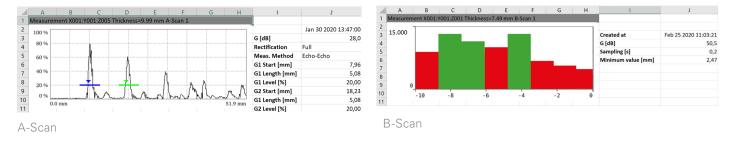
| 2020-02-06<br>08:39 | [8      | 4 % TG SD   | A-Gati<br>1x  | e A-RNG <b>A-Gair</b><br>FW Hi |  |  |  |  |  |  |  |  |  |  |
|---------------------|---------|-------------|---------------|--------------------------------|--|--|--|--|--|--|--|--|--|--|
| 0.0                 | T/R - 1 | TS5H   5.0  |               | 22.3                           |  |  |  |  |  |  |  |  |  |  |
|                     |         |             | 2             | 0.50 mm                        |  |  |  |  |  |  |  |  |  |  |
|                     |         |             | r             | <b>–</b> mm                    |  |  |  |  |  |  |  |  |  |  |
|                     |         |             |               |                                |  |  |  |  |  |  |  |  |  |  |
|                     |         | 6030 m/s    | J             | .00 mm                         |  |  |  |  |  |  |  |  |  |  |
| -                   | Single  | e-Echo   Ze | eroCr+        |                                |  |  |  |  |  |  |  |  |  |  |
| •                   | _       | _           |               | _                              |  |  |  |  |  |  |  |  |  |  |
| BBBBB               |         | (10         | x10x10)       | AB                             |  |  |  |  |  |  |  |  |  |  |
|                     | Z001    | Z002        | Z003          | Z004                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y001           | 12.52   | 4.85        | 6.10          | 6.10                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y002           | 10.00   | 10.00       | $>\!\!\!\sim$ | 7.96                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y003           | 3.64    | 3.64        | 3.64          | 3.64                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y004           | 3.67    | 3.67        | 3.67          | 3.67                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y005           | 12.49   | 12.49       | 12.49         | 10.00                          |  |  |  |  |  |  |  |  |  |  |
| X001:Y006           | 7.48    | 7.48        | 7.48          | 7.48                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y007           | 7.48    | 5.02        | 5.02          | 5.02                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y008           | 5.02    | 5.02        | 5.59          | 4.96                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y009           | 5.02    | 5.02        | 5.02          | 5.02                           |  |  |  |  |  |  |  |  |  |  |
| X001:Y010           | 2.56    | 2.59        | 2.06          | 2.06                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y001           | 4.01    | 4.01        | 4.01          | 4.01                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y002           | 9.97    | 9.97        | 9.97          | 9.97                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y003           | 6.00    | 6.00        | 6.00          | 6.00                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y004           | 4.01    | 4.01        | 4.01          | 4.01                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y005           | 4.01    | 2.03        | 2.03          | 2.03                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y006           | 7.51    | 7.51        |               | 7.51                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y007           | 7.51    | 7.51        |               | 7.51                           |  |  |  |  |  |  |  |  |  |  |
| X002:Y008           | 10.00   | 10.00       | 10.00         | 10.00                          |  |  |  |  |  |  |  |  |  |  |
| X002:Y009           | 8.07    | 8.07        | 10.06         | 10.06                          |  |  |  |  |  |  |  |  |  |  |
| X002:Y010           | 6.05    | 6.05        | 6.05          | 4.06                           |  |  |  |  |  |  |  |  |  |  |
| X003:Y001           | 6.05    | 10.15       | 10.21         | 7.98                           |  |  |  |  |  |  |  |  |  |  |
| X003:Y002           | 6.02    | 6.02        | 4.96          | 4.96                           |  |  |  |  |  |  |  |  |  |  |

Efficient and reliable data collection with color coded grid visualization

| C-Th in<br>7.92 |             | [mm Wi<br>.04 - | mm]<br>10.03 | 5.00 mm     | 9.97    |          | 20.50 mn | n        | [86 %   |
|-----------------|-------------|-----------------|--------------|-------------|---------|----------|----------|----------|---------|
| 2020-0          | 92-25 12:01 | DEM             | О СОМРА      | RISON       | (10x10) | )        |          | T/R - T) | (S7.5i  |
|                 | X001        | X002            | X003         | X004        | X005    | X006     | X007     | X008     | FW      |
| Y001            | 10.03       |                 |              |             |         |          |          |          | 1x      |
| Y002            |             |                 |              |             |         |          |          |          |         |
| Y003            |             |                 |              |             |         |          |          | L (      | ).      |
| Y004<br>Y005    |             |                 |              |             |         |          |          | $\vdash$ | A-Gat   |
| Y005            |             |                 |              |             |         |          |          |          | A-Rive  |
| 1000            |             |                 |              |             |         |          |          |          |         |
| 8               |             |                 |              | i i<br>4 5  |         |          |          |          | Hi      |
| ×               |             |                 |              |             |         |          |          |          |         |
| ×               |             |                 |              | л           |         |          |          |          |         |
| ×               |             |                 |              | в           |         |          |          |          | 7.50.14 |
| *               |             |                 |              |             |         |          |          |          | 7.50 MF |
| ×               |             |                 |              |             |         |          |          | A^       |         |
| 8               |             |                 |              | A''h        |         |          |          |          | ΤG      |
|                 |             |                 | Singl        | e-Echo   Ze |         |          |          |          |         |
| 0.0             |             |                 | onigi        |             |         | 56-III/5 |          |          | 22.3    |

Comparison mode including comparison thickness (C-TH), comparison wall loss (C-WL) and current wall loss from nominal value (WL)

# SONOTEC 🔀


### DATA LOGGING & POST PROCESSING

- Data export and reporting | Excel (.xlsx file format) and optional SQLite database
- Setup information | Detailed device settings for each logged point for maximum transparency
- Unlimited text length | Clear labeling and description of measurement points

|    | А         | В     | C     | D      | F     | F     | G     | н     | 1     | 1     | К    | A lb.                | 8                         | С           | D          | E                          | F            | G     | н       | 1      | J     | K     | ι      | м     | N       | 0      | Р        | Q         | R     | S                  |
|----|-----------|-------|-------|--------|-------|-------|-------|-------|-------|-------|------|----------------------|---------------------------|-------------|------------|----------------------------|--------------|-------|---------|--------|-------|-------|--------|-------|---------|--------|----------|-----------|-------|--------------------|
|    |           | -     | ~     |        |       |       |       |       |       |       |      | 1 Legend             | A-Scan is att             |             |            |                            |              |       |         |        |       |       |        |       |         |        |          |           |       |                    |
| 1  | Th [mm]   | Z001  | Z002  | Z003   | Z004  | Z005  | Z006  | Z007  | Z008  | Z009  | Z010 | 3 8                  | B-Scan is att             |             |            |                            |              |       |         |        |       |       |        |       |         |        |          |           |       |                    |
| 2  | X001:Y001 | 0,50  | 4,85  | 6,10   | 6,10  | 9,99  | 10,00 | 10,00 | 10,00 | 10,00 | 10,0 | 4 #                  | µ-Grid is atta            | ched.       |            |                            |              |       |         |        |       |       |        |       |         |        |          |           |       |                    |
| 3  | X001:Y002 | 10,00 |       | $\sim$ |       |       | 7,96  |       |       | 3.64  | 3.6  | 5 •                  | Comment is<br>Temperature |             |            | and the state of the state |              |       |         |        |       |       |        |       |         |        |          |           |       |                    |
|    |           |       |       | $\leq$ |       |       |       |       |       |       |      | 7 4                  | Measured v                |             |            |                            | ig measuren  | nent. |         |        |       |       |        |       |         |        |          |           |       |                    |
| 4  | X001:Y003 | 3,64  | 3,64  | 3,64   | 3,64  | 3,64  | 6,12  | 6,12  | 6,10  | 6,10  | 6,6  | 8 >                  | Measured v                |             |            |                            |              |       |         |        |       |       |        |       |         |        |          |           |       |                    |
| 5  | X001:Y004 | 3,67  | 3,67  | 3,67   | 3,67  | 3,67  | 3,67  | 3,67  | 4,23  | 12,49 | 12,4 | 9                    | No measure                | nent possib | le (obstru | ction, corror              | sion, etc.). |       |         |        |       |       |        |       |         |        |          |           |       |                    |
| 6  | X001:Y005 | 12.49 | 12.49 | 12.49  | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.0 | 10 Location          | Thickness                 | Flags N     | Aeas. 1    | Measurine                  | c [m/s]      | GN    | Iominal | Lower  | Upper | M15 1 | M2 H 1 | M3 c  | Comment | AuScan | B-Sran I | u-Grid Se | etun  | Created at         |
| -  |           |       | 7.40  | 7.40   |       | 7.40  | 7.40  | 7.40  | 7.40  |       |      | 11                   | [mm]                      |             | ethod      | Mode                       |              |       | Value   | Limit  | Limit | (mm)  | [%]    | [m/s] |         |        |          |           |       |                    |
|    | X001:Y006 | 7,48  | 7,48  | 7,48   | 7,48  | 7,48  | 7,48  | 7,48  | 7,48  | 7,48  | 7,4  | X001:Y001:Z001       | 0,50                      | < Sing      | de-Echo    | Zero                       | 5920         | 64,0  | 15,00   | 20,00  | 25,00 | 0,50  | 27     | 5920  |         |        |          | 2         | la.   | an 30 2020 08:03:- |
| 8  | X001:Y007 | 7,48  | 5,02  | 5,02   | 5,02  | 5,02  | 5,02  | 5,02  | 5,02  | 5,02  | 5,0  | 12<br>X001:Y001:2002 |                           | e Sine      | fle-Echo   | Crossing<br>Zero           | 5030         | 64.5  | 15.00   | 20.00  | 25.00 | 4.85  | 28     | 5920  |         |        |          | _         |       | an 30 2020 08:03:  |
| 9  | X001:Y008 |       |       |        | 4.96  | 4.96  |       | 5.17  |       |       |      | 13                   | 4,65                      | * 5m        |            | Crossing                   | 5920         | 04,5  | 15,00   | 20,00  | 25,00 | 4,85  | 28     | 5920  |         |        |          | <b>*</b>  | 14    | 1 50 2020 08:05::  |
| 10 | X001:Y009 |       |       |        |       | 5.02  | 1,99  | 2.00  | 2,00  | 1,97  |      | X001:Y001:2003       | 6,10                      | < Sing      | ple-Echo   | Zero                       | 5920         | 40,0  | 15,00   | 20,00  | 25,00 | 6,10  | 77     | 5920  |         |        |          | 3         | Ja    | an 30 2020 13:43:1 |
| 10 |           |       |       |        |       |       |       |       |       |       |      | 14<br>X001;Y001;Z004 |                           | e Sine      | fle-Echo   | Crossing                   |              | 44.0  | 15.00   | 20.00  | 25.00 | 6.10  | 63     | 5920  |         |        |          | -         | -     |                    |
| 11 | X001:Y010 | 2,56  | 2,59  | 2,06   | 2,06  | 2,06  | 2,06  | 2,06  | 2,06  | 2,65  | 2,0  | 15                   | 6,10                      | < Sing      |            | Zero<br>Crossing           | 5920         | 44,0  | 15,00   | 20,00  | 25,00 | 6,10  | 63     | 5920  |         |        |          | 2         | , set | an 30 2020 13:43:  |
| 12 | X002:Y001 | 4,01  | 4,01  | 4,01   | 4,01  | 4,01  | 4,01  | 4,01  | 4,01  | 4,01  | 4,0  | X001:Y001:2005       | 9,99                      | A Ech       | o-Echo     | Zero                       | 5970         | 28,0  | 5,00    | 20,00  | 20,50 | 10,19 | 78     | 5970  |         | 1      |          | 4         | Ja    | an 30 2020 13:47:1 |
| 13 | X002:Y002 | 9.97  | 9.97  | 9.97   | 9.97  | 9.97  |       |       |       |       | 6.0  | 16 001:0001:2006     | 10.00                     | A Ech       | o-Echo     | Zero                       | 5970         | 28.0  | 5.00    | 20.00  | 20.50 | 10.18 | 80     | 5970  |         | 2      |          | 4         | Ja    | an 30 2020 13:47:1 |
|    |           |       |       |        |       |       |       |       |       |       |      | 17                   |                           |             |            | Crossing                   |              |       |         |        |       |       |        |       |         |        |          | - E       |       |                    |
| 14 | X002:Y003 | 6,00  | 6,00  | 6,00   | 6,00  | 6,00  | 6,00  | 6,00  | 6,00  | 6,00  | 4,0  | X001:Y001:2007       | 10,00                     | A Ech       | o-Echo     | Zero                       | 5970         | 28,0  | 5,00    | 20,00  | 20,50 | 10,18 | 79     | 5970  |         | 3      |          | 4         | Ja    | an 30 2020 13:47:1 |
| 15 | X002:Y004 | 4,01  | 4,01  | 4,01   | 4,01  | 4,01  | 4,01  | 4,01  | 4,01  | 4,01  | 4,0  | 18<br>X001:Y001:2008 | 10.00                     | A Eck       | o-Echo     | Crossing<br>Zero           | 5970         | 28.0  | 5.00    | 20.00  | 20.50 | 10,18 | 80     | 5970  |         |        |          | -         |       | an 30 2020 13:47:1 |
| 16 | X002:Y005 | 4,01  | 2,03  | 2,03   | 2,03  | 2,03  | 2,03  | 2,03  | 2,03  | 2,03  | 2,0  | 19                   | 10,00                     | n           |            | Crossing                   | 3970         | 20,0  |         | 20,000 | 20,30 | 10,10 | 00     | 3,770 |         | 2      |          | 2 P       | 1.4   | 1 30 2020 23/1/3   |

Direct data export and reporting with MS-Excel including linked A-scans, B-scans, comments, setups and statistics

### - Attachments for each point | Micro-grids, comments, A-Scans, B-Scans



## SONOGRID & SONOWALL 70

The perfect combination for corrosion testing and reporting made in Germany



- Color coded linear, 2D and 3D matrix creation including micro grids
- Grid copy function with possibility to edit its parameters
- Easy data collection of measurement values and attachments
- Live comparison function and corrosion rate estimation
- Customizable test report in XLSX format and optional SQLite database
- Device setup list for all collected measurement points
- Unlimited text length for comments

SONOTEC preserves the right to change technical specifications without further notice. (Rev. 1 / 2020-03-17)

SONOWALL 70

10.00

SALES & SUPPORT

SONOTEC GmbH Nauendorfer Str. 2 06112 Halle (Saale) Germany

phone+49 (0)345 / 133 17-0e-mailsonotec@sonotec.dewebwww.sonotec.eu



Certified according to ISO 9001 & EN ISO 13485